Модифицированные нуклеозиды могут стать лекарством от рака

Модифицированные нуклеозиды могут стать лекарством от рака

В работе английских ученых открыт и описан механизм, посредством которого предотвращается включение в ДНК модифицированных производных цитозина. Но самым значительным результатом работы представляется то, что показана принципиальная возможность использовать усиленную экспрессию цитидиндезаминазы при ряде злокачественных опухолей — известный механизм устойчивости к противораковым препаратам — для лечения рака.

Нуклеотиды — рибонуклеотиды или дезоксирибонуклеотиды, — из которых строится соответственно РНК или ДНК любых клеток, не только синтезируются в клетке de novo. Природа бережлива, и часть материала для синтеза ДНК производится при реутилизации распадающейся ДНК погибших клеток из нуклеозидов — предшественники нуклеотидов.

Нуклеозиды — это органические соединения, состоящие из азотистого (пуринового или пиримидинового) основания — аденина, гуанина, тимина или цитозина (в РНК его заменяет урацил) — и связанного с ним гликозидной связью пятичленного углевода — рибозы или дезоксирибозы (соответственно, различают рибо- и дезоксирибонуклеозиды); рис. 2. Нуклеозиды могут быть фосфорилированы киназами клетки, и тогда образуются соответствующие нуклеотиды. Однако в реутилизации ДНК участвуют не только стандартные нуклеозиды (точнее, дезоксирибонуклеозиды), но и их модификации, из которых чаще всего встречается метилдезоксицитидин — 5mdC . Известны также другие модификации дезоксицитидина — гидроксиметилдезоксицитидин (5hmdC), формилдезоксицитидин (5fdC) и карбоксидезоксицитидин (5cadC).

Эти модификации возникают в результате эпигенетических процессов, происходящих на уже синтезированной ДНК. Так, метилирование дезоксицитидина в определенных участках ДНК служит главным образом для регуляции экспрессии генов. Включенные в геном в процессе синтеза ДНК уже модифицированные нуклеотиды распознаются как неправильные, и срабатывает система репарации: в ДНК возникают разрывы, неправильные нуклеотиды отщепляются, на их место ставятся правильные и разрывы зашиваются. Но мощности системы, ликвидирующей эти разрывы, может не хватить. В результате клетка переходит в состояние апоптоза и гибнет. Поэтому существуют механизмы, предотвращающие включение опасных модифицированных нуклеотидов в ДНК.

О метилдезоксицитидине (5mdC) уже было известно, что он реутилизируется как другой нуклеозид — дезокситимидин — после дезаминирования (удаления аминогруппы NH2). А вот как реутилизируются другие модификации дезоксицитидина — известно не было. Поскольку в процессе реутилизации ДНК к нуклеозидам последовательно присоединяются три фосфатные группы и получаются нуклеозидтрифосфаты — субстраты для синтеза новой ДНК с помощью ДНК-полимеразы, то можно было предположить, что барьер, не позволяющий модифицированным цитозинам включиться в ДНК, должны воздвигнуть либо ферменты, участвующие в реутилизации, либо ДНК-полимераза.

Исследователи проследили, как работает цепочка реутилизации цитозина применительно к его модификациям. Дезоксицитидинтрифосфат (dC-трифосфат) образуется из дезоксицитидина (dC) в результате трех ферментативных реакций, присоединяющих к нему три фосфатные группы, выполняемых последовательно дезоксицитидинкиназой (DCK), цитидинмонофосфаткиназами (CMPK1 и CMPK2) и семейством нуклеозиддифосфаткиназ (NDPK). Проверку начали с последнего звена — ДНК-полимеразы. В ДНК-полимеразной реакции in vitro гидроксиметилдезоксицитидин (5hmdC) включался в ДНК. После того как в культивируемые клетки был введен 5hmdC-трифосфат, в их ДНК был обнаружен 5hmdC. Следовательно, блокирование не связано с ДНК-полимеразой.

Далее были проверены другие звенья цепи реутилизации. В силу ряда особенностей метаболизма авторы обратили внимание прежде всего на дезоксицитидинкиназу (DCK) и цитидинмонофосфаткиназу CMPK1. Рекомбинантная (полученная методами генетической инженерии) DCK оказалась способной фосфорилировать — переносить 32Р — на дезоксицитидин (dC), на метилдезоксицитидин (5mdC), на гидроксиметилдезоксицитидин (5hmdC), на формилдезоксицитидин (5fdC), но не на карбоксидезоксицитидин (5cadC). В то же время CMPK1 могла присоединять вторую фосфатную группу только на немодифицированный dC-монофосфат. Таким образом, неспособность CMPK1 фосфорилировать модифицированные цитозиновые нуклеозиды представляет собой препятствие, предотвращающее их включение во вновь синтезируемую ДНК.

В следующей серии экспериментов была изучена реакция различных культивируемых раковых клеток на присутствие в культуральной среде модифицированных производных цитозина. Была проверена токсичность гидроксиметилдезоксицитидина (5hmdC) для 19 линий клеток. Рост 17 из них не подавлялся или подавлялся незначительно, но клетки двух линий оказались чрезвычайно чувствительными как к 5hmdC, так и к формилдезоксицитидину (5fdC); . Сравнение профилей экспрессии генов этих двух линий с профилями устойчивых клеток выявили достоверные различия для 1380 генов. Но из генов, участвующих в транспорте нуклеозидов или в реутилизации цитидина, среди них нашелся лишь усиленно экспрессирующийся ген цитидиндезаминазы (CDA), которая превращает дезоксицитидин (dC) в дезоксиуридин (dU). Чтобы подтвердить связь уровня экспрессии CDA и токсичности 5hmdC, в чувствительных клетках блокировали экспрессию CDA с помощью shРНК. И действительно, при этом клетки становились значительно более устойчивыми к 5hmdC.

In vitro CDA оказалась способной дезаминировать метилдезоксицитидин (5mdC), гидроксиметилдезоксицитидин (5hmdC), формилдезоксицитидин (5fdC), но не карбоксидезоксицитидин (5cadC). В результате дезаминирования дезоксицитидина (dC) и метилдезоксицитидина (5mdC) образуются дезоксиуридин (dU) и дезокситимидин (dT) — нормальные предшественники тимидинтрифосфата. Но в результате дезаминирования 5hmdC и 5fdC образуются нестандартные нуклеозиды гидроксиметилдезоксиуридин (5hmdU) и формилдезоксиуридин (5fdU). Поэтому далее было изучено, может ли 5hmdC в клетках с повышенной активностью CDA преодолеть блок, превратившись в 5hmdU, и связана ли специфическая токсичность для клеток 5hmdC с включением в ДНК 5hmdU.

Прежде всего, была проверена способность работать с 5hmdU и с 5fdU теперь уже ферментов реутилизации дезоксиуридина (dU) и дезокситимидина (dT) — тимидинкиназы, присоединяющей первый фосфат к тимидину, и тимидилаткиназы, присоединяющей к нему второй фосфат. И оказалось, что в отличие от цитидинмонофосфаткиназы СМРК1, неспособной использовать как субстраты соответствующие монофосфаты гидроксиметилдезоксицитидина (5hmdC) и формилдезоксицитидина (5fdC), тимидилаткиназа присоединяла второй фосфат и к гидроксиметилдезоксиуридину (5hmdU), и к формилдезоксиуридину (5fdU). В то же время, мощная гидролаза, разрушающая дезоксиуридинтрифосфат и таким образом не позволяющая ему включиться в ДНК, с трифосфатами 5hmdU и 5fdU не работала. И наконец, в ДНК клеток линии MDA-MB-231, обладавших очень активной цитидиндезаминазой (CDA), после культивирования с 5hmdC или 5fdC обнаруживались гидроксиметилурацил (5hmUra) или формилурацил (5fUra) соответственно, но не гидроксиметилцитозин (5hmCyt) или формилцитозин (5fdCyt). Таким образом, CDA может дезаминировать 5hmdC или 5fdC, превращая их в 5hmdU или в 5fdU, которые затем фосфорилируются и включаются в ДНК, вызывая ее фрагментацию и гибель клетки.

Известно, что усиленная экспрессия CDA при ряде раков связана с устойчивостью к противораковым препаратам — аналогам цитидина. Она превращает их в безвредные для клетки соединения, что делает применение этих лекарств малоэффективным или бесполезным. В данном исследовании результат оказался противоположным: из-за усиления активности CDA нетоксичные в норме 5hmdC и 5fdC становятся для клеток летальными. Поэтому авторы предположили, что 5hmdC и 5fdC можно применить для селективного подавления раковых клеток. Они смешали равные количества культивируемых клеток рака легких Н1299, экспрессирующих нормальный уровень CDA и Н1299, в которых с помощью генно-инженерных манипуляций уровень CDA был резко повышен. При дальнейшем культивировании в присутствии 5hmdC или 5fdC наблюдалось резко выраженное селективное подавление роста последних .

Наиболее яркий результат был получен в экспериментах на мышах. Животным трансплантировали одновременно оба типа клеток Н1299 и «лечили» их с помощью инъекций 5hmdC или 5fdC . Опухоли, вызванные Н1299 с высоким уровнем экспрессии CDA, росли значительно медленнее, чем в случае нормальных Н1299. Аналогичный результат был получен при сравнении онкогенного потенциала клеток SN12C с высоким уровнем экспрессии CDA и SN12C, в которых экспрессия CDA была подавлена с помощью shРНК. Особо примечательно, что детальный анализ показал отсутствие каких-либо токсических для животных эффектов введения 5hmdC или 5fdC, по крайней мере в концентрациях, примененных для «лечения».

Иллюстрация к статье: Яндекс.Картинки
Подписывайтесь на наш Telegram, чтобы быть в курсе важных новостей медицины

Читайте также

Оставить комментарий

Вы можете использовать HTML тэги: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>

Лимит времени истёк. Пожалуйста, перезагрузите CAPTCHA.